(1)OA=OEcosα=cosα,OB=OGcos(45°-α)=√3cos(45°-α);
f(α)=1/2*OA*OB*sin45°=(√6/4)cosαcos(45°-α).
(2)f(x)=(√6/4)cosxcos(45°-x)=(√6/8)[cos45°+cos(2x-45°)]
=(√6/8)cos(2x-45°)+(√3/8)
x∈[0°,45°] ==> 2x-45°x∈[-45°,45°] ==> cos(2x-45°)∈[√2/2,1]
==> f(x)∈[√3/4,(√6+√3)/8].