(x²+x-3)/(x-1)(x-2)(x-3) = A/(x-1) + B/(x-2) + C/(x-3),
求A,B,C的值.
分别通分得
A/(x-1)=A(x-2)(x-3)/ (x-1)(x-2)(x-3)-------(1)
B/(x-2)=B(x-1)(x-3)/ (x-1)(x-2)(x-3)-------(2)
C/(x-3)=C(x-1)(x-2)/ (x-1)(x-2)(x-3)-------(3)
则上面三式有,
x²+x-3= A(x-2)(x-3)+ B(x-1)(x-3)+ C(x-1)(x-2)
x²+x-3=(A+B+C)x²-(5A+4B+3C) x+(6A+3B+2C)
所以,
A+B+C=1--------(4)
5A+4B+3C=-1----(5)
6A+3B+2C=-3----(6)
联立(4)(5)(6)得 A,B,C的值.,计算得A=-1/2,B=-3,C=9/2.