lim tan^n (π/4 + 1/n) n逼近无穷大
2个回答

解法如下:

设1/n=x,当n→+∞,x→0,

lim tan^n (π/4 + 1/n)=lim [tan(x+π/4 )]^(1/x)

先求 [tan(x+π/4 )]^(1/x) 的值

根据麦克劳林公式在x=0点展开tan(x+π/4):

tan(x+π/4)=1+2x+o(x)

则:[tan(x+π/4 )]^(1/x)=[1+2x+o(x)]^(1/x)=[1+2x+o(x)] ^ [(1/ 2x+o(x))*(2x+o(x))*(1/x)]

设2x+o(x)=t → 上式=(1+t)^[(1/t)*t*(1/x)]

=(1+t)^ [(1/t)*(t/x)]

变形到上面式子就是考虑利用特殊极限:

lim(1+x)^(1/x)=e [x→ 0]

所以:lim[tan(x+π/4 )]^(1/x)=lim(1+t)^[(1/t)*t*(1/x)]=lim e^[(2x+o(x))/x] =e^2

所以:lim tan^n (π/4 + 1/n) =e^2