非零复数求值非零复数x,y满足x^2+y^2+xy=0,则【x/(x+y)】^2005+【y/(x+y)】^2005 的
1个回答

x^2+xy+y^2=0,两边除以y^2得,(x/y)^2+x/y+1=0,

根据求根公式得,x/y=(-1+√3i)/2,或x/y=(-1-√3i)/2,

当x/y=(-1+√3i)/2时,x/(x+y)=1-y/(x+y)=1-1/(x/y+1)=(1+√3i)/2,

y/(x+y)=(1-√3i)/2,

当x/y=(-1-√3i)/2时,x/(x+y)=(1-√3i)/2,y/(x+y)=(1+√3i)/2,

两种情况都是[x/(x+y)]^2005+[y/(x+y)]^2005=[(1-√3i)/2]^2005+[(1+√3i)/2]^2005,

计算[(1-√3i)/2]^3=-1,[(1+√3i)/2]^3=-1,

2005/3=668...1

所以原式=(-1)^1+(-1)^1=-2

参考以下做法:

x^2=-y(x+y)

y^2=-x(x+y)

所以x/(x+y)=-y/x

y/(x+y)=-x/y

而(x/y)^2+x/y+1=0

所以(x/y)^3-1=(x/y-1)((x/y)^2+x/y+1)=0

(x/y)^3=1

同样(y/x)^3=1`

所以[x/(x+y)]^2005+[y/(x+y)]^2005

=(-y/x)^2005+(-x/y)^2005

=(-y/x)^1+(-x/y)^1

=-1-1

=-2