a>=0 b>=0 c>=0 求证alga+blgb+clgc>=algb+blgc+clga>=algc+blgb+c
1个回答

0

所以 lga-lgc>0 a-b>0 (lga-lgc)(a-b)>0

lgb-lgc>0 b-c>0 (lgb-lgc)(b-c)>0

所以

(lga-lgc)(a-b)+(lgb-lgc)(b-c)>0

所以

alga-algc+blgc-blga+blgb-blgc+clgc-clgb>0

所以(blgc一正一负)

alga+blgb+clgc>algc+blga+clgb 1式

因为 a>b>c>0

所以

a-c>0 lga-lgb>0 (a-c)(lga-lgb)>0

b-c>0 lgb-lgc>0 (b-c)(lgb-lgc)>0

所以

(a-c)(lga-lgb)+(b-c)(lgb-lgc)>0

所以

alga-algb+clgb-clga+blgb-blgc+clgc-clgb>0

所以(clgb一正一负)

alga+blgb+clgc>algb+blgc+clga 2式

1式+2式 两边同时加 alga+blgb+clgc

可得 3(alga+blgb+clgc)>alga+algb+algc+blga+blgb+blgc+clga+clgb+clgc

右边是(lga+lgb+lgc) (a+b+c)的展开式(你可以展开看看)

所以可得

3(alga+blgb+clgc)>(lga+lgb+lgc)(a+b+c)

所以

alga+blgb+clgc>(lga+lgb+lgc) (a+b+c)/3

alga+blgb+clgc)/(a+b+c0大于等于1/3