联立y=-(1/2)x+1和y=kx可得D点坐标(2/(2k+1),2k/(2k+1))
设E(X₁kx₁),F(x₂,kx₂) 易知E在第三象限,F在第一象限.
然后由向量或定比分点都可得
x₁+6X₂=7×D点横坐标,.(*)
联立x²/4+y²/1=1和y=kx得到X₁=-2/√(1+4k²),x₂=2/√(1+4k²),代入(*)式可得k=2/3或3/8
(2)点E,F到线段AB距离之和d=|x₁+2kx₁-1|/√5+|x₂+2kx₂-1|/√5
由E在AB下方,F在AB上方得x₁+2kx₁-10
∴d=(2k+1)(x₂-x₁)/√5
∴四边形AEBF面积S=½AB×d=½(2k+1)(x₂-x₁)=2(2k+1)/√(1+4k²),
∴S²=4(4k²+4k+1)/(1+4k²)=4[1+4k/(1+4k²)]
由基本不等式1+4k²≥4k(k>0)得4k/(1+4k²)≤1
∴S²≤4
∴S≤2(当k=½时取得最大值)