已知tanβ=[4/3],sin(α+β)=[5/13],且α,β∈(0,π),则sinα的值为______.
1个回答

解题思路:求得sinβ和cosβ的值,根据已知条件判断出α+β的范围,进而求得cos(α+β)的值,最后利用正弦的两角和公式求得答案.

∵α,β∈(0,π),tanβ=[4/3],sin(α+β)=[5/13],

∴sinβ=[4/5],cosβ=[3/5],0<β<[π/2],

∴0<α+β<[3π/2],

∵0<sin(α+β)=[5/13]<[1/2],

∴0<α+β<[π/6],或[5π/6]<α+β<π,

∵tanβ=[4/3]>1,

∴[π/2]>β>[π/4],

∴[5π/6]<α+β<π,

∴cos(α+β)=-

1−sin2(α+β)=-[12/13],

∴sinα=sin(α+β-β)=sin(α+β)cosβ-cos(α+β)sinβ=[5/13]×[3/5]+[12/13]×[4/5]=[63/65].

故答案为:[63/65].

点评:

本题考点: 两角和与差的正弦函数.

考点点评: 本题主要考查了两角和与差的正弦函数.解题过程中判断出α+β的范围是解题的最重要的一步.