取E为原点,ED为x轴,EA为y轴. 按题意,各点的坐标为:
E(0, 0)
D(4, 0)
A(0, 4)
K(4, 4)
B(2, 4)
C(4, 3)
直线BC的方程为:
(y - 4)/(x-2) = (3-4)/(4-2)
2(y - 4) = 2 -x
设P点的坐标为P(a, b), 则 2(b-4) = 2 -a
b = 5 -0.5a (1)
GPFE面积为: S = ab = a(5-0.5a) = -0.5a^2 + 5a = -0.5(a-5)^2 +12.5
a = 5时GPFE面积时最大, P点的坐标为P(5, 5/2).
如果P可以在直线BC上的任何处,这就是答案.
如果P只能在线段BC上, 还需另加讨论.
S = -0.5(a-5)^2 +12.5 是以(5, 5/2)为顶点,开口向下的抛物线. P的横坐标离5越远,GPFE面积越小. 五边形完全在直线x=5左侧,于是P的横坐标为4时GPFE面积最大, P点的坐标为P(4, 3) (与C点重合).