设f(x)与g(x)可导,f^2(x)+g^2 (x)≠0,求证函数y=根号下f^2(x)+g^2 (x)可导
收藏:
0
点赞数:
0
评论数:
0
1个回答

△x=h

△y/△x=[√(f^2(x+h)+g^2 (x+h))-√(f^2(x)+g^2 (x))]/h

分子有理化

△y/△x=[(f^2(x+h)+g^2 (x+h))-(f^2(x)+g^2 (x))]

/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))] (分子有理化)

=[(f^2(x+h) -f^2(x))+(g^2 (x+h)- g^2 (x))]

/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))](集项)

=[(f(x+h) -f (x))( f(x+h) +f (x))/ h +(g (x+h)- g (x)) (g (x+h)+ g (x))/h]*

1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))](平方差分解因式)

f(x)可导,f’(x)存在,

且f(x)连续,故当h→0时,f(x+h)→f (x)

于是当h→0时,

(f(x+h) -f (x))( f(x+h) +f (x))/ h→2f’(x)f(x)

同理当h→0时,

(g (x+h)-g (x))(g (x+h)+g (x))/h→2g’(x)g(x)

同理当h→0时,

1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))] →1/[2√(f^2(x)+g^2 (x))]

(有意义,因为f^2(x)+g^2 (x)≠0)

从而

(△x→0)lim(△y/△x)=[ f’(x)f(x) +g’(x)g(x)]/ √(f^2(x)+g^2 (x))

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识