用换元法计算定积分∫【0到1】(x+2)/{[(x^2)+4x+1]^2 }dx
1个回答

∫[0→1] (x + 2)/(x² + 4x + 1)² dx

= ∫[0→1] (x + 2)/[(x + 2)² - 3]² dx

令x + 2 = √3secy、dx = √3secytany dy

x = 0 → y = arcsec(2/√3)

x = 1 → y = arcsec(3/√3) = arcsec(√3)

原式 = ∫ (√3secy)/(3sec²y - 3)² * [√3secytany dy]

= ∫ (√3secy)/(9tan⁴y) * [√3secytany] dy

= (1/3)∫ sec²y/tan³y dy

= (1/3)∫ csc²ycoty dy

= (1/3)∫ cscy * [cscycosy dy]

= (- 1/3)∫ cscy d(cscy)

= (- 1/6)csc²y

= (- 1/6)(1 + cot²y)

= (- 1/6)(1 + 1/tan²y)

= (- 1/6)[1 + 1/(sec²y - 1)],上限arcsec(√3)、下限arcsec(2/√3)、分别代入

= (- 1/6){1 + 1/[(√3)² - 1]} + (1/6){1 + 1/[(2/√3)² - 1]}

= 5/12