求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.
1个回答

11/20

方法一:(1-1/4)=1-(1/2)2 =(1+1/2)(1-1/2) (1-1/9)=1-(1/3)2=(1+1/3)(1-1/3)

(1-1/16)=1-(1/4)2=(1+1/4)(1-1/4)以此类推(1-1/100)=1-(1/10)2=(1+1/10)(1-1/10)

即3/2*1/2*3/4*2/3*5/4*3/4*6/5*4/5*7/6*5/6*8/7*6/7*9/8*7/8*10/9*8/9*11/10*9/10

中间很多数都可以约分约掉 最后就只剩下1/2和11/10 他们两个相乘便可得到最后答案11/20

方法二:1-1/n^2=[n^2-1]/n^2=[(n-1)/n][(n+1)/n]

(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/10^2)

=(1/2*3/2)*(2/3*4/3).(9/10*11/10)

=(1/2*2/3*3/4...9/10)(3/2*4/3*...*11/10)

=1/10*11/2

=11/20

方法三:n^2 表示 n的平方.

因为 1 -(1/n)^2 = (1 -1/n) (1 +1/n)

= [ (n-1)/n ] *[ (n+1)/n ],

(n>=2),

所以 原式= (1/2) (3/2) (2/3) (4/3) (3/4) (5/4) ...(9/10) (11/10)

= 11/20.

分解因式:

a^2 -b^2 =(a+b)(a-b).