已知△ABC的面积S满足3≤S≤3√3,且向量AB*BC=6,向量AB与BC夹角为θ
1个回答

AB·BC=|AB|*|BC|*cos

=accosθ=6

故:cosθ=6/(ac)

△ABC的面积:S=(1/2)acsinB

=(1/2)acsin(π-θ)=3tanθ

3≤S≤3√3

即:3≤3tanθ≤3√3

即:1≤tanθ≤√3

即:π/4≤θ≤π/3

2

f(θ)=sinθ^2+2sinθcosθ+3cosθ^2

=sin(2θ)+1+2cosθ^2

=sin(2θ)+1+(1+cos(2θ))

=sin(2θ)+cos(2θ)+2

=√2sin(2θ+π/4)+2

π/4≤θ≤π/3,即:π/2≤2θ≤2π/3

即:3π/4≤2θ+π/4≤11π/12

即:sin(2θ+π/4)∈[(√6-√2)/4,√2/2]

故f(θ)的最大值:√2*√2/2+3=3