(2010•鞍山)①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
1个回答

解题思路:①(1)由三角形中位线知识可得EF=GH,EF∥GH,∴四边形EFGH是平行四边形.

(2)要是菱形,只需增加相邻两边相等,如要得到EF=GF,由中位线知识,只须AB=CD.

②∵FB∥AC,∠ACB=90°∴∠FBC=90°,由AC=BC、∠ACB=90°∴∠DBA=45°,AB是∠CBF平分线.证明Rt△ADC≌Rt△FBC,所以DB=FB,所以,AB垂直平分DF(等腰三角形中的三线合一定理).

①(1)证明:

∵E、F分别是AD、BD中点,

∴EF∥AB,EF=[1/2]AB,

同理GH∥AB,GH=[1/2]AB,

∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.

(2)当四边形ABCD满足AB=CD时,四边形EFGH是菱形.

证明:F、G分别是BD、BC中点,所以GF=[1/2]CD,

∵AB=CD,∴EF=GF

又∵四边形EFGH是平行四边形,

∴四边形EFGH是菱形.

②证明:∵∠ACB=90°,Rt△ADC中,∠1+∠2=90°,

∵AD⊥CF,在Rt△EDC中,∠3+∠2=90°,得:∠1=∠3.

∵FB∥AC,∠ACB=90°,∴∠FBC=90°,得:△FBC是直角三角形.

∵AC=BC,∠1=∠3,△FBC是直角三角形

∴Rt△ADC≌Rt△FBC.

∴CD=FB,已知CD=DB,可得:DB=FB.

由AC=BC、∠ACB=90°,可得:∠4=45°,AB是∠CBF平分线.

所以,AB垂直平分DF(等腰三角形中的三线合一定理).

点评:

本题考点: 菱形的判定;线段垂直平分线的性质;三角形中位线定理;平行四边形的判定.

考点点评: 本题考查了中位线知识,平行四边形和菱形的判断方法.