解下列方程:(1)log2(4-x)-log4(x-1)=1 (2)2lg(2x-1)=lg(-2x+7)+lg(x+1
2个回答

log2(4-x)-log4(x-1)=1

log2(4-x)-log2(x-1)/log2(4)=1

log2(4-x)-log2(x-1)/2=1

2log2(4-x)-log2(x-1)=2

log2(4-x)²-log2(x-1)=2

log2[(4-x)²/(x-1)]=2

则(4-x)²/(x-1)=4

(4-x)²=4(x-1)

16-8x+x²=4x-4

20-12x+x²=0

(x-2)(x-10)=0

x1=2 x2=10

2lg(2x-1)=lg(-2x+7)+lg(x+1)

2lg(2x-1)-lg(-2x+7)-lg(x+1)=0

lg(2x-1)²-lg(-2x+7)-lg(x+1)=0

lg{(2x-1)²/[(-2x+7)(x+1)]}=0

则(2x-1)²/[(-2x+7)(x+1)]=1

(2x-1)²=(-2x+7)(x+1)

4x²-4x+1=-2x²-2x+7x+7

6x²-9x-6=0

2x²-3x-2=0

(2x+1)(x-2)=0

x1=-1/2 x2=2