tan∠B=AC/BC=3/4 勾股定理 AB^2=AC^2+BC^2
解得:AC=3 BC=4
(1)当ED等于EB时 ∠B=∠BDE 又因:∠CDA 和∠BAC 分别与∠B和∠BDE 互余
所以::∠CDA =∠BAC ∠DAC=∠B
DC=AC*tan∠DAC=3*3/4
AD^2=DC^2+AC^2=9+81/16
AD=15/4
AE=5-EB=5-ED
AE^2=DE^2+AD^2
(5-ED)^2=DE^2+(15/4)^2 解得:ED=35/32
tan角DAE=DE/AD=35/32/(15/4)=7/24
(2)AE=5-EB=5-y
由 tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)得:
x=(tan∠BAC-tan∠DAC)/(1+tan∠BACtan∠DAC)=(4/3-DC/3)/(1+4/3*DC/3)
整理得:DC=(12-9x)/(3+4x)
AD^2=DC^2+AC^2=DC^2+9
AD^2+DE^2=AE^2
AD^2+(x*AD)^2=(5-y)^2
AD^2(1+X^2)=(5-y)^2
(DC^2+9)(1+X^2)=(5-y)^2
(((12-9x)/(3+4x))^2+9)(1+X^2)=(5-y)^2 函数关系式 定义域 0