请问下列数项级数是收敛还是发散的
5个回答

(1)∑(3^n+7n)/[2^n(n²+1)]=∑(3/2)^n/(n²+1)+∑7n/[2^n(n²+1)]

∵lim(x->+∞)[(3/2)^x/(x²+1)]

=lim(x->+∞)[(3/2)^xln(3/2)/(2x)] (应用罗比达法则)

=lim(x->+∞)[(3/2)^xln²(3/2)/2] (应用罗比达法则)

=ln²(3/2)/2*lim(x->+∞)[(3/2)^x]

=+∞≠0

∴级数∑(3/2)^n/(n²+1)发散 (不满足收验的必要条件)

∵lim(n->∞){[7n/(2^n(n²+1))]/[1/(n*2^n)]}

=lim(n->∞)[7n²/(n²+1)]

=lim(n->∞)[7/(1+1/n²)]

=7

∴7n/[2^n(n²+1)]=O(1/(n*2^n))

∵1/(n*2^n)≤1/2^n

而级数∑1/2^n收验

∴级数∑1/(n*2^n)收验

∴级数∑7n/[2^n(n²+1)]收验

故原级数∑(3^n+7n)/[2^n(n²+1)]发散;

(2)∵lim(x->+∞)(x/log³x)

=lim(x->+∞)(xln³10/ln³x)

=lim(x->+∞)[xln³10/(3ln²x)] (应用罗比达法则)

=lim(x->+∞)[xln³10/(6lnx)] (应用罗比达法则)

=lim(x->+∞)(xln³10/6)

=+∞≠0

∴原级数∑n/log³n发散 (不满足收验的必要条件).