(1)∑(3^n+7n)/[2^n(n²+1)]=∑(3/2)^n/(n²+1)+∑7n/[2^n(n²+1)]
∵lim(x->+∞)[(3/2)^x/(x²+1)]
=lim(x->+∞)[(3/2)^xln(3/2)/(2x)] (应用罗比达法则)
=lim(x->+∞)[(3/2)^xln²(3/2)/2] (应用罗比达法则)
=ln²(3/2)/2*lim(x->+∞)[(3/2)^x]
=+∞≠0
∴级数∑(3/2)^n/(n²+1)发散 (不满足收验的必要条件)
∵lim(n->∞){[7n/(2^n(n²+1))]/[1/(n*2^n)]}
=lim(n->∞)[7n²/(n²+1)]
=lim(n->∞)[7/(1+1/n²)]
=7
∴7n/[2^n(n²+1)]=O(1/(n*2^n))
∵1/(n*2^n)≤1/2^n
而级数∑1/2^n收验
∴级数∑1/(n*2^n)收验
∴级数∑7n/[2^n(n²+1)]收验
故原级数∑(3^n+7n)/[2^n(n²+1)]发散;
(2)∵lim(x->+∞)(x/log³x)
=lim(x->+∞)(xln³10/ln³x)
=lim(x->+∞)[xln³10/(3ln²x)] (应用罗比达法则)
=lim(x->+∞)[xln³10/(6lnx)] (应用罗比达法则)
=lim(x->+∞)(xln³10/6)
=+∞≠0
∴原级数∑n/log³n发散 (不满足收验的必要条件).