(2014?余姚市模拟)已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.(Ⅰ)求抛物线方程;(Ⅱ
1个回答

(I)抛物线y2=2px(p>0)的焦点为([p/2],0),准线为x=?

p

2,

由抛物线的定义可知:4=3+

p

2,p=2

∴抛物线方程为y2=4x;

(II)由于抛物线y2=4x的焦点F为(1,0),准线为x=-1,

设直线AB:x=my+1,与y2=4x联立,消去x,整理得:

y2-4my-4=0,

设A(x1,y1),B(x2,y2),P(-1,t),有

y1+y2=4m

y1y2=?4

易知k3=?

t

2,而k1+k2=

y1?t

x1+1+

y2?t

x2+1

=

(x2+1)(y1?t)+(x1+1)(y2?t)

(x1+1)(x2+1)=

(

y22

4+1)(y1?t)+(

y21

4+1)(y2?t)

(

y21

4+1)(

y22

4+1)

=

?t(4m2+4)

4m2+4=?t=2k3

∴存在实数λ=2,使得k1+k2=λk3恒成立.