(1)从点O向CD作垂线,垂足为G.
根据垂径定理可知CG=DG,
又∵CE∥OG∥DF,
∴OE=OF.
∵OA=OB,
∴AE=BF.
(2)四边形CDFE的面积是定值.理由如下:
过点O作OG⊥CD于G,连接OD.
则DG=1/2 CD=4.5.
在△OGD中,∠OGD=90°,OD=1/2 AB=7.5,根据勾股定理得OG= √(7.5^2-4.5^2) =6,
∵OD、DG是定值,
∴OG是定值.
∵CE∥OG∥DF,G为CD中点,
∴O为EF中点,
∴OG为梯形CDFE的中位线,
∴CE+DF=2OG=2×6=12,
∵梯形的高也是定值9,
∴梯形的面积是定值=12×9÷2=54.
望采纳,谢谢