在直角坐标系xOy中,一次函数y=kx+b+2(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面
3个回答

(1)

易知直线与x轴交点为 (-(b+2)/k,0),与y轴交点为(0,b+2)

因交于正半轴,则 -(b+2)/k >0,b+2>0,k0 ,b+5>0 ,k 0

S = |OA|+|OB|+3 = |-(b+2)/k| + |b+2| + 3 = -(b+2)/k + (b+2) +3

将k = -b(b+2)/2(b+5) 代入,得

S = 2(b+5)/b + (b+2) +3 = 10/b + b + 7

因b>0

由基本不等式得

S = 10/b + b + 7 ≥ 2√[(10/b)*b] + 7 = 7 + 2√10

当且仅当 10/b = b,即 b = √10时

△OAB面积取得最小值为 Smin = 7 + 2√10