从0至9这10个数字中选出7个填入图中的方框中,使竖式成立,一共有多少种不同的填法?
1个回答

解题思路:因为:

所以四位数的千位上只能是1,而根据个位数之和是8,只能填0到9中的数字,所以只能是5+3=8,6+2=8,每种情况都有12种情况,据此解答即可.

因为结果是2008,所以四位数的千位上一定是1,

结合和是2008可得:

1076+932=2008

1072+936=2008

1036+972=2008

1032+976=2008

1476+532=2008

1472+536=2008

1432+576=2008

1436+572=2008

1572+436=2008

1576+432=2008

1532+476=2008

1536+472=2008

1065+943=2008

1063+945=2008

1045+963=2008

1043+965=2008

1765+243=2008

1763+245=2008

1265+743=2008

1263+745=2008

1243+765=2008

1245+763=2008

答:一共有22种填法.

点评:

本题考点: 竖式数字谜.

考点点评: 本题考查学生的加法的计算熟练程度,能激起学生学习的兴趣,关键是根据和的每个数位上的数字从后向前推算.