(2011•广州一模)已知函数y=f(x)的定义域为R,且对于任意x1,x2∈R,存在正实数L,使得|f(x1)-f(x
1个回答

(1)证明:对任意x1,x2∈R,有

|f(x1)−f(x2)|=|

1+

x21−

1+

x22|=|

x21−

x22

1+

x21+

1+

x22|=

|x1−x2|•|x1+x2|

1+

x21+

1+

x22.…2分

由|f(x1)-f(x2)|≤L|x1-x2|,即

|x1−x2|•|x1+x2|

1+

x21+

1+

x22≤L|x1-x2|.

当x1≠x2时,得L≥

|x1+x2|

1+

x21+

1+

x22.

1+

x21>|x1|,

1+

x22>|x2|,且|x1|+|x2|≥|x1+x2|,

|x1+x2|

1+

x21+

1+

x22<

|x1+x2|

|x1|+|x2|≤1.…4分

∴要使|f(x1)-f(x2)|≤L|x1-x2|对任意x1,x2∈R都成立,只要L≥1.

当x1=x2时,|f(x1)-f(x2)|≤L|x1-x2|恒成立.

∴L的取值范围是[1,+∞).…5分

(2)证明:①∵an+1=f(an),n=1,2,…,

故当n≥2时,|an-an+1|=|f(an-1)-f(an)|≤L|an-1-an|=L|f(an-2)-f(an-1)|≤L2|an-2-an-1|≤…≤Ln-1|a1-a2|

n

k=1|ak−ak+1|=|a1−a2|+|a2−a3|+|a3−a4|+…+|an−an+1|≤(1+L+L2+…+Ln-1)|a1-a2