经过椭圆2分之X的平方+y的平方=1的左焦点F1的直线L,直线L与椭圆相交与A,B点,求弦长AB的最小值
3个回答

x2 /2 + y2 = 1,c2 = a2 – b2 = 1 => c = 1 => 左焦点F1(-1,0),对直线L的斜率是否存在分类讨论:

1)直线L的斜率不存在,方程为x = -1,与椭圆的交点为A(-1,-√2 /2)和B(-1,√2 /2),此时AB = √2;

2)直线L的斜率存在,设直线方程y = k(x + 1),与x2 + 2y2 = 2联立可得,x2 + 2k2(x + 1)2 = 2 => (2k2 + 1)x2 + 4k2x + 2k2 – 2 = 0,Δ= 16k4 – 4(2k2 + 1)(2k2 – 2) = -4(-2k2 – 2) = 8(k2 + 1),所以弦长AB = √(k2 + 1)·√[8(k2 + 1)] /(2k2 + 1) = 2√2·(k2 + 1)/(2k2 + 1) = 2√2{1/2 + 1/[2(2k2+ 1)]} = √2 + √2/(2k2 + 1),式中k2≥0 => 2k2≥0 => 2k2 + 1≥1 => 1/(2k2 + 1) ∈(0,1] => √2/(2k2 + 1) ∈(0,√2] => AB = √2 + √2/(2k2 + 1) ∈(√2,2√2],此时AB > √2;

综上所述,当直线L的方程为x = -1时,弦长AB的最小值为√2 .