设抛物线y^2=4x的焦点为F,其准线方程与x轴交于点C,过点F作它的弦AB,若角CBF=90度,则|AF|-|BF|的
2个回答

设AB方程为:y=k(x-p/2)(假设k存在)

联立得k^2(x^2-px+p^2/4)=2px

(k^2)x^2-(k^2+2)px+(kp)^2/4=0

设两交点为A(x1,y1),B(x2,y2),

∠CBF=90°即(x1-p/2)(x1+p/2)+y1^2=0

x1^2+y1^2=p^2/4

x1^2+2px1-p^2/4=0

(x1+p)^2=(5/4)p^2

x1=(-2+√5)p/2或(-2-√5)p/2(舍)

∴A((-2+√5)p/2,√(-2+√5)p)

|AC|=√{[(1+√5)/2]^2+(-2+√5)}p=√[(-1+√5)/2]p

|AF|=√{[(-3+√5)/2]^2+(-2+√5)}p=√[(3-√5)/2]p==(-1+√5)p/2

∵ΔCAF∽ΔBAC,故|AB|/|AC|=|AC|/|AF|

∴|AB|=|AC|^2/|AF|=p

∴|BF|=|AB|-|AF|=(3-√5)p/2

|AF|-|BF|=4p/2

AF-BF=2P