设曲线y=x^2-2x+4上点M(0,4)处的切线与曲线y^2=2(x-1)围成的面积
1个回答

y'=2x-2.

当x=0时,y'=-2.

故x^2-2x+4在点M(0,4)处的切线方程是:y=-2x+4.

原抛物线的顶点是(1,0),先把抛物线左移1个单位,可得y^2=2x

同时把x也左移1个单位,得到y=-2(x+1)+4即y=-2x+2.

把左移后的抛物线绕其顶点逆时针旋转90度(把x和y互换即可)后得到:x^2=2y.

即:y=(1/2)x^2.---------------------------------------------------------(1)

把y=-2x+2绕原点逆时针旋转90度,得到:y=(1/2)*x+1.-------------------(2)

联立(1)(2),得:两交点分别是(-1,1/2)和(2,2).

所求面积为:

积分(从-1到2)[(1/2)*x+1-(1/2)x^2]

=[-(1/2)*(1/3)*x^3+(1/2)*(1/2)*x^2+x]|(x=2)-[-(1/2)*(1/3)*x^3+(1/2)*(1/2)*x^2+x]|(x=-1)

=(5/3)-(-7/12)=9/4.