设z=2/x^2+2y/x+7.(1)若x^2+y^2=2,求z的最小值(2)若x^2-y^2=2.,求z的取值范围
1个回答

(1)设x=√2Cosθ,y=√2Sinθ,θ∈[0,2π)

原始z=2/x^2+2y/x+7

=2/(4Cos²θ)+2Tanθ+7

=1/(Cos2θ+1)+2Tanθ+7(设t=Tanθ)

=1/(((1-t²)/(1+t²))+1)+2t+7

(万能公式:Sin2θ=2t/(1+t²),Cos2θ=(1-t²)/(1+t²),t=Tanθ)

=(t+2)²/2-3/2+7

≥11/2(当t=-2,即x=2√10/5,y=-√10/5时等号成立)

(2)设x=√2Secθ,y=√2Tanθ,θ∈[0,π/2)

原始z=2/x^2+2y/x+7

=Cos²θ+2Sinθ+7

=9-(Sinθ-1)²

∈[8,9)