由4cosC •sin²C/2+cos²C=0,
化简得:4cosC• 1-cosC/2+2cos²C-1=0,
即cosC= ½,又C为三角形的内角,则有C= π/3,
∴sinC=√ 3/2,又C=π-(A+B),
∴sin(A+B)= √3/2,
∵tanA=2tanB,sinA/sinA=2sinB/cosB
∴ sinA·cosB+cosA·sinB=√3/2
sina·cosB-2cosA·sinB=0
cosA·sinB=√3/6
sinA·cosB=√3/3
sin(A-B)=cosA·sinB-sinA·cosB=√3/6
则sin(A-B)= √3/6;