已知:BD,CE是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB.
2个回答

解题思路:根据垂直求出∠BEO=∠CDO=90°,根据三角形的内角和定理求出∠ABF=∠ACG,推出△ABF≌△GCA,根据全等三角形的性质得出∠G=∠BAF即可.

证明:∵BD,CE是△ABC的高,

∴∠BEO=∠CDO=90°,

∵∠EOB=∠DOC,∠ABF+∠EOB+∠BEO=180°,∠ACG+∠CDO+∠DOC=180°,

∴∠ABF=∠ACG,

在△ABF和△GCA中,

AB=CG

∠ABF=∠ACG

BF=AC,

∴△ABF≌△GCA,

∴∠G=∠BAF,

∵∠GEA=∠CEB=90°,

∴∠G+∠GAB=90°,

∴∠BAF+∠GAB=90°,

∴∠GAF=90°,

∴AG⊥AF.

点评:

本题考点: 全等三角形的判定与性质.

考点点评: 本题考查了三角形的内角和定理和全等三角形的性质和判定的应用,解此题的关键是推出△ABF≌△GCA,注意:全等三角形的对应边相等,对应角相等.