已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.
1个回答

解题思路:(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;

②由△ABD≌△ACE就可以得出BC=DC+CE;

(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE;

(3)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,就可以得出CE+BC=CD.

(1)①∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC-∠DAC=∠DAE-∠DAC,

∴∠BAD=∠EAC.

在△ABD和△ACE中

AB=AC

∠BAD=∠EAC

AD=AE,

∴△ABD≌△ACE(SAS).

②∵△ABD≌△ACE,

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

(2)BC+CD=CE.

∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC+∠DAC=∠DAE+∠DAC,

∴∠BAD=∠EAC.

在△ABD和△ACE中

AB=AC

∠BAD=∠EAC

AD=AE,

∴△ABD≌△ACE(SAS).

∴BD=CE.

∵BD=BC+CD,

∴CE=BC+CD;

(3)DC=CE+BC.

∵△ABC和△ADE是等边三角形,

∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.

∴∠BAC-∠BAE=∠DAE-∠BAE,

∴∠BAD=∠EAC.

在△ABD和△ACE中

AB=AC

∠BAD=∠EAC

AD=AE,

∴△ABD≌△ACE(SAS).

∴BD=CE.

∵DC=BD+BC,

∴DC=CE+BC;

点评:

本题考点: 全等三角形的判定与性质;等边三角形的性质.

考点点评: 本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.