根号下1+x的2的积分怎么求
2个回答

求不定积分∫√(1+x²)dx

令x=tanu,则dx=sec²udu,于是

原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=secutanu-∫tan²usecudu

=secutanu-∫(sec²u-1)secudu=secutanu-∫sec³udu+∫secudu

移项得2∫sec³udu=secutanu+∫secudu=secutanu+ln(secu+tanu)+2C

故∫√(1+x²)dx=(1/2)secutanu+(1/2)ln(secu+tanu)+C

=(1/2)x√(1+x²)+(1/2)ln[√(1+x²)+x]+C