高数题:设f(x)在R上有二阶连续导数,且f(0)=0,x不等于0时,g(x)=f(x)/x;x=0时,g(x)=f'(
4个回答

应该是证g(x)在R上有一阶连续导数吧?

当x≠0时,g(x)=f(x)/x

∴g'(x) = [xf'(x)-f(x)]/x²

g'(x)在x≠0时连续

x=0时,

g'(0) = lim(x→0) [g(x)-g(0)]/(x-0)

=lim(x→0) [f(x)/x-f'(0)]/x

=lim(x→0) [f(x)-xf'(0)]/x²

=lim(x→0) [f'(x)-f'(0)]/(2x)

=(1/2)f''(0)

又lim(x→0) [xf'(x)-f(x)]/x²

=lim(x→0) [f'(x)+xf''(x)-f'(x)]/(2x)

=(1/2)f''(0)

∴lim(x→0) g'(x) =g'(0)

即g'(x)在x=0处连续

综上可得g'(x)在R上连续,即g(x)在R上有一阶连续导数