若函数y=x3+[3/2]x2+m在[-2,1]上的最大值为[9/2],则m的值为______.
1个回答

解题思路:由已知得y′=3x2+3x,由y′=0,得x=0或x=-1,由此利用导数性质求出函数y=x3+[3/2]x2+m在[-2,1]上的最大值为y|x=1=[5/2]+m=[9/2],由此能求出m的值.

∵y=x3+[3/2]x2+m,

∴y′=3x2+3x,

由y′=0,得x=0或x=-1,

∵y|x=-2=-8+6+m=m-2,

y|x=-1=-1+[3/2]+m=[1/2+m,

y|x=0=m,

y|x=1=1+

3

2]+m=[5/2]+m,

∴函数y=x3+[3/2]x2+m在[-2,1]上的最大值为y|x=1=[5/2]+m=[9/2],

解得m=2.

故答案为:2.

点评:

本题考点: 利用导数求闭区间上函数的最值.

考点点评: 本题考查函数的最值的求法,是中档题,解题时要注意导数性质的合理运用.