数列{an}的前n项和记为Sn,Sn=2an-2,(1)求{an}的通项公式
2个回答

s(n+1)=2a(n+1)-2

an=s(n+1)-sn

=2(an+1)-2-(2an-2)

2a(n+1)=3an

q=a(n+1)/an=3/2

a2=a1q=3a1/2

s2=a1+3a1/2=5a1/2

s2=2*3a1/2-2=3a1-2

5a1/2=3a1-2

a1=4

a2=6

a3=9

等差数列{bn}的各项为正,其前3项和为6

s3=3b2=6

b2=2

a1+b1,a2+b2,a3+b4成等比数列

即4+2-d,6+2,9+2+2d成等比数列

即6-d,8,11+2d成等比数列

(6-d)(11+2d)=64

2d^2-d-2=0

d^2-d/2-1=0

d^2-d/2+1/16-11/16=0

(d-1/4)^2-17/16=0

(d-1/4-√17/4)(d-1/4+√17/4)=0

d=1/4+√17/4 或 d=1/4-√17/4

当d=1/4+√17/4时

a2=a1+d

2=a1+1/4+√17/4

a1=2-(1/4+√17/4)=7/4-√17/4

an=7/4-√17/4+(n-1)(1/4+√17/4)

=7/4-√17/4-1/4-√17/4+(1/4+√17/4)n

=3/2-√17/2+(1/4+√17/4)n

当d=1/4-√17/4时

a2=a1+d

2=a1+1/4-√17/4

a1=2-(1/4-√17/4)=7/4+√17/4

an=7/4+√17/4+(n-1)(1/4-√17/4)

=7/4+√17/4-1/4+√17/4+(1/4-√17/4)n

=3/2+√17/2+(1/4-√17/4)n