求定积分 根号(5-4x-x^2)dx
1个回答

∫√(5 - 4x - x^2) dx

=∫√[9 - (4 + 4x + x^2)] dx

=∫√[9-(2+x)^2] dx

设 x + 2 = 3*sint,则 dx = 3*cost * dt

则原式变为:

= ∫√[9 - 9(sint)^2] *3cost*dt

=∫√(3*cost)^2 * 3cost *dt

=9*∫(cost)^2 dt

=9/2 *∫[2(cost)^2]*dt

=9/2 *∫[1 + cos(2t)] *dt

=9/2 * [ t + 1/2*sin(2t)] + C

=9/2 * t + 9/4 *sin(2t) + C

=9/2 * arcsin[(x+2)/3] + 9/4 * 2*sint * cost + C

=9/2 * arcsin[(x+2)/3] + 9/2 * (x+2)/3 * √{1-[(x+2)/3]^2} + C

=9/2*arcsin[(x+2)/3] + (x+2)/2 * √[9 - (x+2)^2] + C

=9/2*arcsin[(x+2)/3] + (x+2)*√(5-4x-x^2) /2 + C