如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.
7个回答

解题思路:(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形;

(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积.

(1)证明:∵AD∥BC,

∴∠DEC=∠EDA,∠BEA=∠EAD,

又∵EA=ED,

∴∠EAD=∠EDA,

∴∠DEC=∠AEB,

又∵EB=EC,

∴△DEC≌△AEB,

∴AB=CD,

∴梯形ABCD是等腰梯形.

(2)当AB⊥AC时,四边形AECD是菱形.

证明:∵AD∥BC,BE=EC=AD,

∴四边形ABED和四边形AECD均为平行四边形.

∴AB

.ED,

∵AB⊥AC,

∴AE=BE=EC,

∴平行四边形AECD是菱形.

过A作AG⊥BE于点G,

∵AE=BE=AB=2,

∴△ABE是等边三角形,

∴∠AEB=60°,

∴AG=

3,

∴S菱形AECD=EC•AG=2×

3=2

3.

点评:

本题考点: 等腰梯形的判定;全等三角形的判定与性质;菱形的判定与性质.

考点点评: 此题考查了等腰梯形的判定、平行四边形的判定与性质、等腰三角形的性质以及菱形的判定与性质.此题综合性较强,难度适中,注意数形结合思想的应用.