已知函数f(x)=log12(3+2x−x2).
1个回答

解题思路:(Ⅰ)设t=3+2x-x2,则

y=lo

g

1

2

t

.求出f(x)的定义域,先研究t,y的单调性,再根据复合函数单调性的判定方法即可求得f(x)的单调区间,注意定义域;

(Ⅱ)在f(x)的定义域内先求函数t=-(x-1)2+4的值域,再结合为y=log2t的单调性即可求得f(x)的值域;

(Ⅰ)设t=3+2x-x2,则y=log

1

2t.

由t=3+2x-x2>0得x2-2x-3<0,即(x+1)(x-3)<0,解得-1<x<3.

因为t=-(x-1)2+4,所以抛物线的对称轴为x=1.

当x∈(-1,1]时,t是x的增函数,y是t的减函数;

当x∈[1,3)时,t是x的减函数,y是t的减函数.

所以,函数f(x)的单调递增区间为[1,3),单调递减区间为(-1,1].

(Ⅱ)如图:

由(Ⅰ)知t=-(x-1)2+4,当x=1时,tmax=4.

又因为y=log2t在(0,4]上是减函数,

所以当tmax=4时,ymin=log

1

24=log

1

2(

1

2)−2=−2.

故函数f(x)的值域为[-2,+∞).

点评:

本题考点: 复合函数的单调性;函数的值域.

考点点评: 本题考查复合函数的单调性、对数函数、二次函数的性质及函数值域的求解,属中档题,判断复合函数单调性的方法:“同增异减”.