△ABC中,∠C=2∠B将△ABC沿过点A的直线AD折叠使AB落在直线AC上,若CD∥AB,AD交BC于E,若BE=6,
1个回答

如图,由题可得AD是角平分线,所以∠1=∠2=1/2∠A

△ACE和△ABE中,由正弦定理有:CE/sin(A/2)=AE/sinC,BE/sin(A/2)=AE/sinB

所以AEsin(A/2)=CEsinC,AEsin(A/2)=BEsinB

所以CEsinC=BEsinB,即4sinC=6sinB

因为∠C=2∠B

所以4*2sinBcosB=6sinB,解得cosB=3/4,sinB=根号7/4

sinC=2sinBcosB=3根号7/8,cosC=1/8

sinA=sin(180°-A)=sin(B+C)=sinCcosB+sinBcosC=5根号7/16

△ABD中,由正弦定理有:AB/sinC=BC/sinA

解得AB=12

不知道是否有错,有错请指出