已知:如图,设M是△ABC内部任意一点,MD⊥AB于G,ME⊥BC于K,MF⊥CA于H,BD=BE,CE=CF,求证:A
2个回答

连接MA、MB、MC

MD⊥AB,ME⊥BC,MF⊥CA

∴AF²=AH²+HF² (Rt△AHF)

=AM²-MH²+CF²-CH² (Rt△AMH:AH²=AM²-MH²,Rt△CFH:HF²=CF²-CH²

=AM²+CF²-(MH²+CH²)

=AM²+CF²-CM² (Rt△CMH:MH²+CH²=CM²)

=AM²+CE²-CM² (CF=CE)

AD²=DG²+AG² (Rt△ADG)

=BD²-BG²+AM²-MG² (Rt△BDG:DG²=BD²-BG²,Rt△AGM:AG²=AM²-MG²)

=AM²-(BG²+MG²)+BD²

=AM²-BM²+BE² (Rt△BMG:BG²+MG²=BM²,BD=BE)

=AM²-(BK²+MK²)+(BK²+EK²) (Rt△BMK:BM²=BK²+MK²,Rt△BEK:BE²=BK²+EK²)

=AM²-BK²-MK²+BK²+EK²

=AM²-MK²+EK²

=AM²-MK²+CE²-CK² (Rt△CEK:EK²=CE²-CK²)

=AM²+CE²-(MK²+CK²)

=AM²+CE²-CM² (Rt△CMK:MK²+CK²=CM²)

∴AF²=AD²

∴AF=AD