数列{a n }的通项 a n = n 2 (co s 2 nπ 3 -si n 2 nπ 3 ) ,其前n项和为S n
1个回答

(1)由于 co s 2

3 -si n 2

3 =cos

2nπ

3 , a n = n 2 •cos

2nπ

3

故S 3k=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3k-2+a 3k-1+a 3k

= (-

1 2 + 2 2

2 + 3 2 )+(-

4 2 + 5 2

2 + 6 2 )+…+[-

(3k-2 ) 2 +(3k-1 ) 2

2 +(3k ) 2 ]

=

13

2 +

31

2 +…+

18k-5

2 =

k(4+9k)

2

S 3k-1 = S 3k - a 3k =

k(4-9k)

2 ,

S 3k-2 = S 3k-1 - a 3k-1 =

k(4-9k)

2 +

(3k-1) 2

2 =

1

2 -k=-

3k-2

3 -

1

6 ,

故 S n =

-

n

3 -

1

6 n=3k-2

(n+1)(1-3n)

6 n=3k-1

n(3n+4)

6 n=3k (k∈N *

(2) b n =

S 3n

n• 4 n =

9n+4

2• 4 n ,

T n =

1

2 [

13

4 +

22

4 2 ++

9n+4

4 n ] ,

4 T n =

1

2 [13+

22

4 ++

9n+4

4 n-1 ] ,

两式相减得 3 T n =

1

2 [13+

9

4 +…+

9

4 n-1 -

9n+4

4 n ]=

1

2 [13+

9

4 -

9

4 n

1-

1

4 -

9n+4

4 n ]=8-

1

2 2n-3 -

9n

2 2n+1 ,

故 T n =

8

3 -

1

3• 2 2n-3 -

3n

2 2n+1 .