如图,点A、B、C、D在⊙O上,四边形ABCD的对角线把4个内角分成了8个角.
1个回答

解题思路:(1)观察图形,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案;

(2)由∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∠BAD+∠ADC+∠BCD+∠ABC=360°,即可求得∠BAD+∠BCD=180°,∠ABC+∠ADC=180°.

(1)如图:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8;

(2)∠BAD+∠BCD=180°,∠ABC+∠ADC=180°.

证明:∵∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∠BAD+∠ADC+∠BCD+∠ABC=360°,

∴∠2+∠8+∠4+∠6=180°,∠1+∠3+∠5+∠7=180°,

即∠BAD+∠BCD=180°,∠ABC+∠ADC=180°.

点评:

本题考点: 圆周角定理;圆内接四边形的性质.

考点点评: 此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意掌握数形结合思想的应用是解此题的关键.