已知数列{an}的前n项和Sn满足(p-1)Sn=p²-an(p>0,p≠1)且a3=1\3
1个回答

(1)由题知(p-1)Sn=p²-an ①,

则(p-1)Sn-1=p²-an-1 ②,

①-②,得(p-1)an=an-1-an,即p*an=an-1,an/an-1=1/p,

当n=1时,(p-1)S1=p²-a1,即(p-1)a1=p²-a1,故a1=p,

因为a3=1/3=a1*(1/p)²=1/p,所以p=3=a1,1/p=1/3,

所以{an}是以3为首项,1/3为公比的等比数列,其通项公式为an=(1/3)^(n-2)=3^(2-n).

(2)bn=1/(2-log3an)=1/[2-(2-n)]=1/n,

//如果你说的数列﹛bnbn+2﹜是{bn*b(n+2)}的话

bn*b(n+2)=1/n(n+2)=1/2[1/n-1/(n+2)],

Tn=b1*b3+b2*b4+…+bn*b(n+2)

=1/2[1-1/3+1/2-1/4+1/3-1/5+…+1/(n-1)-1/(n+1)+1/n-1/(n-2)]

=1/2[1-1/(n-2)],

故Tn的极限值为1/2,则当m²-m+3/4≥1/2时,满足对任意正整数n,都有Tn<m²-m+34成立,

m²-m+3/4≥1/2m²-m+1/4≥0

(m-1/2)²≥0

因为(m-1/2)²≥0恒成立,所以m的取值范围为R