如图,在△ABC中,AB=AC,E,F分别为边AB,AC上的一点,且BE=CF,BF,CE相交于点O,问图中还有哪些相等
1个回答

解题思路:根据等腰三角形的性质及条件可以得出△BCE≌△CBF,就可以得出∠BCO=∠CBO,BF=CE,就有BO=CO,就有OF=OE,进而可以得出所有的相等的线段和角.

∵AB=AC,

∴∠ABC=∠ACB.

∵BE=CF,

∴AB-BE=AC-CF,

∴AE=AF.

在△BCE和△CBF中,

BE=CF

∠ABC=∠ACB

BC=CB,

∴△BCE≌△CBF(SAS),

∴∠BCO=∠CBO,BF=CE,∠BEC=∠CFB,

∴BO=CO.∠AEC=∠AFB,

∴∠ABC-∠CBO=∠ACB-∠BCO,CE-CO=BF-BO,

∴∠ABF=∠ACE.EO=FO.

∴图中相等的角有:∠ABC=∠ACB,∠BCO=∠CBO,∠BEC=∠CFB,∠AEC=∠AFB,∠ABF=∠ACE,∠BOE=∠COF,∠EOF=∠BOC.

相等的线段有:AE=AF,BO=CO,EO=FO.

点评:

本题考点: 等腰三角形的性质.

考点点评: 本题考查了等腰三角形的判定及性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,解答时运用运用等腰三角形的性质求解是关键.