解题思路:(1)通过BE∥CD,AB∥CE证得角相等,从而得到△ABE∽△ECD;
(2)先根据相似三角形的对应边成比例求出[EB/DC]的值,再根据△BEC和△DEC边BE和DC上的高相等即可求出S2的值;
(3)由(2)中所求得S2的值及已知S1,S3的值,找出等量关系即可.
(1)∵BE∥CD,∴∠BEC=∠DCE,
∵AB∥CE,∴∠BEC=∠ABE,∠A=∠DEC,
∴∠DCE=∠ABE,
∴△ABE∽△ECD;
(2)∵△ABE∽△ECD,S1=6,S3=3,
∴
EB
DC=
2,
∵BE∥CD,
∴△BEC和△DEC边BE和DC上的高相等,
∴
S2
S3=
BE
DC,即
S 2
3=
2,所以S2=3
2;
(3)∵由(2)可知,S2=3
2,
∴(S2)2=(3
2)2=18,
S1•S3=6×3=18,
∴S22=S1•S3.
点评:
本题考点: 相似三角形的判定与性质.
考点点评: 本题考查的是相似三角形的判定与性质,解答此题的关键是熟知相似三角形面积的比等于相似比的平方这一结论.