已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(
1个回答

解题思路:(1)利用x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,即可得到x3,x4,x5,再利用等比数列的定义即可得出λ的值;

(2)利用数学归纳法证明即可;

(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),即

x

n

x

n−1

=(

x

2

x

1

)•

λ

n−2

λ

n−2

,利用“累加求和”可得xn,再利用等比数列的前n项和公式即可得出不等式的左边,进而证明小于右边.

(1)∵x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,

∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.

x4=(λ+1)(λ+2)-2λ=λ2+λ+2.

x5=(λ+1)(λ2+λ+2)−λ(λ+2)=λ32+λ+2.

∵x1,x3,x5成等比数列,∴

x23=x1•x5,

∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.

(2)下面利用数学归纳法证明:

①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;

②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.

则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,

即xk+2-yk+2≤xk+1-yk+1成立.

即命题定义n=k+1时也成立.

综上可知:命题定义任意n∈N*都成立.

(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),

∴xn−xn−1=(x2−x1)•λn−2=λn−2,

∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1

n-2n-3+…+λ+1+1=

λn−1−1

λ−1+1.(0<λ<1).

∴x2k=

λ2k−1−1

λ−1+1.

∴x2k-xk=

λ2k−1−λk

λ−1

∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk

=[1/λ−1][(λ+λ3+…+λ2k-1)-(λ+λ2+…+λk)]

=[1/λ−1][

λ(λ2k−1)

λ2−1−

λk−1

λ−1]

=[1/1−λ]

(1−λk)(1−λk+1)

1−λ2

=[1

(1−λ)2•

(1−λk)(1−λk+1)/1+λ]<

1

(1−λ)2.=右边.

故不等式成立.

点评:

本题考点: 数列与不等式的综合.

考点点评: 熟练掌握等比数列的定义、通项公式、前n项和公式、数学归纳法、“累加求和”等是解题的关键.