几道数学简单的2倍角函数题(1)tana-1/tana=-2/tan2a(2)tan(a+pai/4)+tan(a-pa
1个回答

(1)∵左边=(tan²a-1)/tana

=-2(1-tan²a)/(2tana)

=-2/(2tana/(1-tan²a))

=2/tan2a (∵tan2a=2tana/(1-tan²a))

=右边

∴原命题成立;

(2)∵左边=(tana+tan(π/4))/(1-tanatan(π/4))+(tana-tan(π/4))/(1+tanatan(π/4))

=(tana+1)/(1-tana)+(tana-1)/(1+tana)

=((tana+1)²-(tana-1)²)/(1-tan²a)

=4tana/(1-tan²a)

=2tan2a (∵tan2a=2tana/(1-tan²a))

=右边

∴原命题成立;

(3)∵左边=(sin²a+cos²a+2sinacosa)/(sina+cosa)

=(sina+cosa)²/(sina+cosa)

=sina+cosa

=右边

∴原命题成立;

(4)∵左边=sina*2cos²a

=(2sinacosa)cosa

=sin2acosa

=右边

∴原命题成立;

(5)∵左边=cos((pai/4+a)-(pai/4-a))-cos((pai/4+a)+(pai/4-a))

=cos2a-cos(pai/2)

=cos2a

=右边

∴原命题成立;

(6)∵左边=(sin²a+cos²a+2sinacosa-cos²a+sin²a)/(sin²a+cos²a+2sinacosa+cos²a-sin²a)

=(2sin²a+2sinacosa)/(2cos²a+2sinacosa)

=2sina(sina+cosa)/(2cosa(sina+cosa))

=sina/cosa

=tana

=右边

∴原命题成立.