[1/(a^-a+1)-(1-a)/(a^3-1)]/{(a^4-a^2-2) /[(a^6-1)-(a^4+a^2+1
1个回答

化简[1/(a²-a+1)-(1-a)/(a³-1)]/{(a⁴-a²-2) /[(a⁶-1)-(a⁴+a²+1)]}

原式=[1/(a²-a+1)+(a-1)/(a-1)(a²+a+1)]×{[(a²-1)(a⁴+a²+1)-(a⁴+a²+1)]/(a⁴-a²-2)]}

=[1/(a²-a+1)+1/(a²+a+1)][(a⁴+a²+1)(a²-2)/(a⁴-a²-2)]

={2(a²+1)/[(a²+1)-a][(a²+1)+a]}[(a⁴+a²+1)(a²-2)/(a⁴-a²-2)]

={2(a²+1)/[(a²+1)²-a²]}[(a⁴+a²+1)(a²-2)/(a⁴-a²-2)]

=[2(a²+1)/(a⁴+a²+1)][a⁴+a²+1)(a²-2)/(a⁴-a²-2)]

=2(a²+1)(a²-2)/(a⁴-a²-2)

=2(a⁴-a²-2)/(a⁴-a²-2)

=2