火星和地球绕太阳的运动可以看作为同一平面内同方向的匀速圆周运动,已知火星的轨道半径R=1.5×1011m,地球的轨道半径
5个回答

解题思路:根据万有引力提供向心力

G

mM

r

2

=m

4

π

2

T

2

r

,可得

T

2

4

π

2

GM

r

3

,对于和火星都有同样的关系,所以

(

T

1

T

2

)

2

=(

r

1

r

2

)

3

,这样可以解出火星的周期.两星转过的角度之差△θ=

(

T

1

T

2

)t

=2 π,可以解得t,即为火星再次与地球相距最近需要的时间.

设行星质量为m,太阳质量为M,行星与太阳的距离为r,地球的周期为T1,火星的周期为T2,地球的轨道半径为r1,火星的轨道半径为r2

根据万有引力定律,行星受太阳的万有引力F=G

mM

r2

行星绕太阳做近似匀速圆周运动,

根据牛顿第二定律有F=ma=mω2r

ω═[2π/T]

以上式子联立G

mM

r2=m

4π2

T2r

故T2=

4π2

GMr3

地球的周期为1年,

(

T1

T2)2=(

r1

r2)3

火星的周期为T2=1.8年

设经时间t两星又一次距离最近,

根据θ=ωt

则两星转过的角度之差

△θ=(

T1−

T2)t=2 π

得t=2.3年.

答:火星再次与地球相距最近需2.3地球年.

点评:

本题考点: 人造卫星的加速度、周期和轨道的关系;牛顿第二定律;万有引力定律及其应用.

考点点评: 本题也可运用开普勒周期定律a3T2=k求解火星的周期,这种方法更简洁.此题难度不大,属于中档题.

相关问题