我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其
1个回答

解题思路:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;

(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;

(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.

(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;

(2)∵AB∥DE,

∴∠B=∠DEC,

∵AE∥DC,

∴∠AEB=∠C,

∵∠B=∠C,

∴∠B=∠AEB,

∴AB=AE.

∵在△ABE和△DEC中,

∠B=∠DEC

∠AEB=∠C,

∴△ABE∽△DEC,

∴[BE/EC=

AE

DC],

∴[AB/DC=

BE

EC];

(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,

∴∠BFE=∠CHE=90°.

∵AE平分∠BAD,DE平分∠ADC,

∴EF=EG=EH,

在Rt△EFB和Rt△EHC中

BE=CE

EF=EH,

∴Rt△EFB≌Rt△EHC(HL),

∴∠3=∠4.

∵BE=CE,

∴∠1=∠2.

∴∠1+∠3=∠2+∠4

即∠ABC=∠DCB,

∵ABCD为AD截某三角形所得,且AD不平行BC,

∴ABCD是“准等腰梯形”.

当点E不在四边形ABCD的内部时,有两种情况:

如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,

∴∠B=∠C,

∴ABCD是“准等腰梯形”.

当点E在四边形ABCD的外部时,

四边形ABCD不一定是“准等腰梯形”.

分两种情况:

情况一:

当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;

情况二:

当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.

点评:

本题考点: 四边形综合题.

考点点评: 本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.