已知数列{an}的前n项和为Sn,且2Sn=3an-2n(n∈N+)
1个回答

∵2Sn=3an-2n (1)

∴2S(n+1)=3a(n+1)-2(n+1) (2)

(2)-(1):

2a(n+1)=2S(n+1)-Sn

=3a(n+1)-2(n+1)-3an+2n

=3a(n+1)-3an-2

∴a(n+1)=3an+2

∴[1+a(n+1) ]/(1+an)=3

∴ {1+an}是等比数列,公比为3

∵2a1=2S1=3a1-2

∴a1=2

∴1+an=3^n

∴an=3^n-1

2

∵ an/[1+a(n+1)]=(3^n-1)/[1+3^(n+1)-1]

=(3^n-1)/3^(n+1)=1/3-1/3^(n+1)

∴Tn=a1/(1+a2)+a2/(1+a3)+……+an/(1+a(n+1)),

=(1/3-1/3^2)+(1/3-1/3^3)+.+[1/3-1/3^(n+1)]

=n/3-[1/3^2+1/3^3+.+1/3^(n+1)]

=n/3-1/9(1-/3^n)/(1-1/3)

=n/3-1/6+1/6*1/3^n (∵1/6*1/3^n>0)

>n/3-1/6=(2n-1)/6