求方程通解 (x+1)y′-2y=(x+1)的4次方 y″+2y′=3e的-2x次方
1个回答

(x+1)y'-2y=(x+1)^4

(x+1)dy/dx-2y=(x+1)^4

dx=d(x+1)

(x+1)dy/d(x+1)-2y=(x+1)^4

(x+1)dy-2yd(x+1)=(x+1)^4d(x+1)

y=(x+1)u,dy=ud(x+1)+(x+1)du

(x+1)[ud(x+1)+(x+1)du]-2u(x+1)d(x+1)=(x+1)^4d(x+1)

ud(x+1)+(x+1)du-2ud(x+1)=(x+1)^3d(x+1)

(x+1)du-ud(x+1)=(x+1)^3d(x+1)

du/(x+1)-ud(x+1)/(x+1)^2=(x+1)d(x+1)

d[u/(x+1)]=d[(1/2)(x+1)^2]

u/(x+1)=(1/2)(x+1)^2+C

y/(x+1)^2=(1/2)(x+1)^2+C

通解y=(1/2)(x+1)^4+C(x+1)^2

2

y''+2y'=3e^(-2x)

y''+2y'=0

r^2+2r=0

r1=-2 r2=0

y=C1e^(-2x)+C

设y=C(x)e^(-2x)是y''+2y'=3e^(-2x)解

y'=C'e^(-2x)-2Ce^(-2x)

y''=C''e^(-2x)-4C'e^(-2x)+4Ce^(-2x)

C''-2C'=3

C''=2(C'+3/2)

(C‘+3/2)=C0e^2x

C'=C0e^2x-3/2

C(x)=C1e^2x-(3/2)x+C1

通解y=[C1e^2x-(3/2)x+C1]*e^(-2x)+C

=C2-(3/2)xe^(-2x)+C1e^(-2x)