如图,在等腰△ABC中AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,O
1个回答

解题思路:①连接OB,根据AD⊥BC,AB=AC,可知AD是CB中垂线,即可证明OB=OC,即可得OB=OC=OP,即可得点O是△PBC的外心;

②易证得△OPC是等边三角形,即可得∠OAM=∠CPM=60°,又由对顶角相等,即可证得△MAO∽△MPC;

③首先在AC上截取AE=PA,易得△APE是等边三角形,继而利用证得△OPA≌△CPE,即可得AC=AO+AP;

④过点C作CH⊥AB于H,易得S△ABC=[1/2]AB•CH,S四边形AOCP=S△ACP+S△AOC=[1/2]AP•CH+[1/2]OA•CD=[1/2]AP•CH+[1/2]OA•CH=[1/2]CH•(AP+OA)=[1/2]CH•AC,即可得S△ABC=S四边形AOCP

①连接OB,

∵在等腰△ABC中AB=AC,AD⊥BC,

∴BD=CD,

∴OB=OC,

∵OP=OC,

∴点O是△PBC的外心;

故①正确;

②∵在等腰△ABC中AB=AC,∠BAC=120°,

∴∠ABC=∠ACB=[180°−∠BAC/2]=30°,

∴∠AOC=2∠ABC=60°,

∵OP=OC,

∴△OPC是等边三角形,

∴∠OPC=60°,

∵∠OAM=[1/2]∠BAC=60°,

∴∠OAM=∠CPM,

∵∠AMO=∠CMP,

∴△MAO∽△MPC;

故②正确;

③在AC上截取AE=PA,

∵∠PAE=180°-∠BAC=60°,

∴△APE是等边三角形,

∴∠PEA=∠APE=60°,PE=PA,

∴∠APO+∠OPE=60°,

∵∠OPE+∠CPE=∠CPO=60°,

∴∠APO=∠CPE,

∵OP=CP,

在△OPA和△CPE中,

PA=PE

∠APO=∠CPE

OP=CP ,

∴△OPA≌△CPE(SAS),

∴AO=CE,

∴AC=AE+CE=AO+AP;

故③正确;

④过点C作CH⊥AB于H,

∵∠PAC=∠DAC=60°,AD⊥BC,

∴CH=CD,

∴S△ABC=[1/2]AB•CH,S四边形AOCP=S△ACP+S△AOC=[1/2]AP•CH+[1/2]OA•CD=[1/2]AP•CH+[1/2]OA•CH=[1/2]CH•(AP+OA)=[1/2]CH•AC,

∵AB=AC,

∴S△ABC=S四边形AOCP

故④错误.

故选C.

点评:

本题考点: 相似三角形的判定与性质;全等三角形的判定与性质;三角形的外接圆与外心.

考点点评: 此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的性质以及三角形外接圆的知识.此题综合性很强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.